Tag Archives: painting

Air (Part III – The SuperTyfon)

The other sounding unit was the air horn.  This was a massive cast aluminum fixture with three bells of varying lengths, producing three different notes.  While several of the Leslie horns produced nice chords, the combination of horns chosen for the Conrail locomotives in the 1970’s produced a more discordant sound, likely to attract more attention.  The Leslie SuperTyfon RS-3L is one of them, the horns producing the C, D#, and A notes.

The ‘S’ is for the SuperTyfon style of horns, the ‘R’ is for the the spike-backed chamber, which helped to make the horns more dependable and durable, the “3” indicates that the horn has three bells on the manfold, and the “L” indicates that the three bell combination for this horn is bells 25, 31, and 44 (C, D#, and A, respectively).  Given that the spike-backed chambers were released in 1977, and the ones on this horn indicate that they are amongst the earliest runs or production, I’m guessing a late 1970’s-very early 1980’s construction for this horn.

The Supertyfon horn, still with the Conrail blue on it.
The SuperTyfon horn, still with the Conrail blue on it.

When I got it from my father, it still retained some of the ‘Conrail blue’ paint, but so much was worn away that it looked rather shabby.

My make-shift blasting box is basically a tarp and card table - important to collect the media, both for re-use and to keep it from going everywhere!
My make-shift blasting box is basically a tarp and card table – important to collect the media, both for re-use and to keep it from going everywhere!

I decided to clean and repaint it, and started with a sand-blasting with the black diamond grit in my little air blaster.

Post-blasting, the horns are a nice, clean aluminum.
Post-blasting, the horns are a nice, clean aluminum.

The end result was really nice clean aluminum, and actually exposed the original plate manufacturer’s plate that had been painted over.

Since I was repainting it, I decided to be a little fancier than just giving it one color, deciding on a gloss bright red for the bell interiors and rims, and a gloss black for the rest of the unit.  This went pretty well, with only a little crackling of the black paint where it went over the red, but I sanded this and put more coats of black on and minimized it considerably.

The red paint is already on, and the tape is on so I can spray the black on and leave the red rims.
The red paint is already on, and the tape is on so I can spray the black on and leave the red rims.

 

Spraying the black paint on the horns.  The tape is holding plastic bags that will keep the insides red.
Spraying the black paint on the horns. The tape is holding plastic bags that will keep the insides red.

 

 

 

 

 

 

 

Installation here, though was more complex than for the chime, due to the fact that the horn had to be mounted up on the roof behind the first support, which meant that it would be under the metal ceiling and need a 90 degree barb fixture that would have to be put in place before the four bolts holding the manifold down could be put in place.  Luckily, I was able to ply a friend with some homebrew and have him stand on the hood of the bus, holding the horn and wrenches in place while I worked from inside to secure things.

(This may sound like I was taking the easier job, but realize that only the front edge of the metal ceiling was loose and the area between it and the roof was full of yellow fiberglass insulation that the ceiling plate kept pushing up while I was trying to work in there.  Plenty itchy work.)

Each of the four bolt-holes, as well as the air-line fixture were surrounded with the butyl around each of the holes.  Once the barb fitting was in place, the stainless-steel bolts were fixed with a lock-washer and nut and cinched down.  The soft air line was run to the horn, and after starting the bus and building pressure in the tank, I gave a very brief voicing of the chimes and the horns, so as not to annoy the neighbors.

Here's the horn in place, all secured and hooked up inside.

Here’s the horn in place, all secured and hooked up inside.

Everything worked nicely, though I found a small leak in the hardline for the chime, so I popped off the soft line, moved the line so that I could remove the pipe from the leaking fitting, replace the Teflon tape on the threads and put it all back together.  As of right now, it is working well and holding pressure as it should.

Both the chimes and the horns in place and ready to go.
Both the chimes and the horns in place and ready to go.

 

Skinned Windows

(Please note: The title of this post in no way connotates that anyone lost their skin to cover the windows in the bus.  😉 )

I noticed that the pictures of the installation of the subfloor showed several windows which had been ‘skinned’, and realized that I missed the description of those in my timeline, so here goes.

I had hoped that all the walls that I was going to put into the bus would correspond with one of the ribs of the body’s structure – the 1 1/2 x 2 inch steel supports which produce the ‘roll cage’ effect of the body.  These are, of course, the sturdiest parts of the body, and are where the sheet steel of the ceiling and wall panels attach.  But, when it came to laying things out, it just wasn’t to be.  The seats for the forward cabin area needed leg room, but too much would make the bathroom area really cramped, especially if we wanted to be able to use the side emergency door.  And if I wanted to have an accessible wet wall behind the shower, and some storage area for a pantry, I couldn’t very well have that eat into the bunks.  And nobody would want to look at the back of the refrigerator, and it would need venting and airflow to work properly.

All that said, I knew that we would have to lose some windows.  My choice of which ones was aided by the accidental breaking of one while loading all the old seats I’d removed back into the bus for transport.  One support went off-balance just a little and the steel foot slammed into the window, shattering it, but leaving the glass shards intact between the plastic laminate (Huzzah for safety glass!).  In order to do this, you have to remove the window, which actually isn’t hard on a Blue Bird body like ours.  Six screws and some pulling/levering in toward the interior and it’s done.

Some people stop there, bending the steel or aluminum sheeting and screwing it to the steel support ribs, or using angle brackets to do the same.  I chose not to do that, since I wanted to be sure that the metal wouldn’t flex, and that we could add insulation to help more with noise and heat/cold.

If you look back to the floorplan I posted before, you might note that three of the windows are in black as opposed to grey or red.  Those are the ones that needed to be skinned, and you can see why – either there are walls that go across them, or a fridge.

Oh!  There it is …

So, the first step was to take the window frames and remove the glass.  Now, the frames are aluminum and they are screwed together, so this was actually far easier than I had expected it to be.  On the outside of these I put 16 gauge steel that was painted green on the outside and brown on the inside (just because I had the brown to use). The steel was screwed to the aluminum frame right on the edges of the frame where it would be hidden by the outside steel of the window supports, but inside the raised lip that helped to seal the windows in tight.  The paint on the outside made them match the rest of the green on the bus, but on the inside it was just to avoid future rust.  Next went in 1″ thick pink polystyrene insulation, with some ‘Great Stuff’ expanding foam to fill the gaps and keep the polystyrene from sliding about or squeaking, and then some nice, 1/2″ pressure-treated plywood filled in the rest of the window area, and that was screwed to the aluminum frame.

This gave me (potentially removable or swapable with most other windows on the bus) skins that didn’t need any special treatment to get them to fit in the window spaces.  A quick, generous bead of silicone sealant went on the raised ridge of the window supports of the bus and in went the skinned windows.

And they look like this from the outside …

And like this from the inside, if you can see past the wall studs (which we haven’t go to yet) …

Floors – Subfloor!

So, armed with a plan, the bus floor needed to go.  You might remember school bus floors as being a black … surface, hard, but not totally unyielding.  Generally, that covering is of a black rubber material.  On some buses, it’s right over the metal floor, but on our bus, it was over 3/4″ marine-grade plywood.

But before I could get to removing the floor, there was one last thing to remove, the back heater.  Some people who convert Skoolies leave them in place so that they can use the engine heat to warm the whole bus, some keep them for an extra ‘heat sink’ when climbing long hills and such.  I decided to take ours out, as we were toying with the idea of radiant heating in the floor.  Well, that and the fact that the coolant tubes ran from the front of the bus to the heater in the back along and under the port wall, taking up space.

See all the shiny metal along the floor on the port side wall that just is missing on the starboard side?  Yeah, that’s all covering coolant lines and the helper pump.
And here’s where it goes under the port emergency door, then comes back up.

So, removing the heater unit wasn’t so bad.  Just a couple of bolts on the side (since the top had been fastened to a seat-frame), and it was loose.  But there was all that tubing, and most all of the phillips-head screws on the floor had been heavily rusted.  See, one thing those rubber floors are really good at is being fairly impermeable to liquids.  Like the water from kids’ shoes on rainy days, and the salt and snow (which becomes a brine when it melts) from kids’ boots in the winter.  And of course, that sets up a perfect rusting situation for all those screw heads – but not necessarily the rest of the screw shank.

Unfortunately, I don’t have pictures of the floor tear-up.  It wasn’t very glamorous, and I was more concerned about getting the floor out to think to take pictures. (And, since I still have a little to do, I’ll remember to take some pictures of that later.)  But a quick description will probably tell you what you are wondering about for the floor itself.

First, the rubber had to come out.  Some of it, like the middle ‘walkway’ strip came out pretty much intact, needing a flat pry bar (Wonderbar-type) to get some of the adhesive to let go, and then a whole lot of pulling.  The stuff that was on the sides was a bit tougher, mostly due to where the seats had been bolted to the floor.  The extra cinch of the bolts made those areas adhere really well and cause the rubber to rip, so this was an extremely frustrating exercise.

The next bit was the marine-grade plywood.  I first tried to just pry it up by one of the emergency doors, with a big (almost 4′ long) bar.  The after a whole lot of effort, the plywood started to crack, and I knew that wasn’t going to be the way.  What I found, after the rubber was removed, was that each sheet of the plywood was fastened down to the floor with a generous number of mostly rusted 14 gauge screws (about 1/4″ in diameter for the shank) that were about 1″ long, going right down through the steel under the plywood.  With my impact driver, I was able to get many of these out, allowing me to pry up most of the sheets intact, right up to behind the driver’s seat by the front door, which I didn’t want to tangle with just yet.

Now, some of the screws pulled through, and some of those smaller screws that had rusted heads pulled through too, leaving a dangerous potential for tetanus for the unwary, barefooted walker.  These, though came out with vice grips & patience, or the angle-grinder.  This, you would think, would leave a relatively clean floor, but not so.  There was, of course, adhesive under the plywood, and the seams of the metal floor, and then the seams between the sheets of plywood were actually ‘caulked’ with a bead of butyl sealant, which stays amazingly sticky and resists cleaning.

And then there were all the screw and bolt-holes in the steel, and, since the rubber does a great job of being a water barrier and these holes all lead to the underside of the bus where all the water can spray up, rust.  But most all of the rust was surface rust, and was cleaned up in an afternoon with the angle-grinder set with a wire wheel.  Once clean, the floor got a coat of black Rustoleum with a roller, and when dry, silicon caulk filled the holes.

Whew!

 

(more in Floors & Walls)