Testing out the Backup Camera(s) (Part I, The Parts)

So, with all the cold weather and lack of being able to work on the bus, I pulled out the backup cameras and screen, to test them out.  I had had these for a while, but they were still in the boxes, and I wasn’t sure how and where I’d be installing things.  I ordered all these from Amazon last winter and just never got around to them.

 

So, here are the parts, all expanded out of their boxes:

NEEWER Waterproof CMOS/CCD Reverse Backup Car Rear View Camera
NEEWER Waterproof CMOS/CCD Reverse Backup Car Rear View Camera

Here is a relatively cheap back-up camera that had decent reviews, and I thought I’d give it a try, or keep it as a spare if the other camera ended up not working or burning out too soon.  It attaches by way of a hollow, threaded post through which the wiring goes.  It has a small plug/socket set to connect the camera to the DC power/return and the 25′ long RCA cable (which will be a little short for the bus).

The attachment for the cheaper camera.
The attachment for the cheaper camera.

There had been some complaints about it not being really waterproof, but it looks good to me, given that the lens and body are all nicely molded together, and the back (with the post) is screwed into it with four small screws, meaning that the only place for water to get in is at the back, which you should be sealing up anyhow.

The molded body of the cheaper camera.
The molded body of the cheaper camera.

They included a little pieces of what seems to be a 1/16″~2mm foam tape (which somehow escaped my picture) to put on it, but I’ll use a thin bead of butyl rubber when I go to attach it.


Night Vision Parking Car Rear View Wide Angle LED Reversing CMOS Camera

Night Vision Parking Car Rear View Wide Angle LED Reversing CMOS Camera

This was the ‘fancy’ back-up camera that I opted for.  It’s ‘fancy’ because it has the IR LEDS that kick on when it gets dark enough.  I had figured that this would be the main back-up camera for the bus.

IR augmented camera. 7 IR LEDs and one photocell sensor.
IR augmented camera. 7 IR LEDs and one photocell sensor.

It attaches to the vehicle by the side-flanges, and the wires come off the back.  It has separate plugs for a rather standard ‘+ in’ 12 VDC plug (the red one in the picture) and a female RCA jack for the video.  The camera came with 25′ of RCA cable, but I have a run of 50′ that I’ll use instead.

Like the cheaper camera, the body and lens are all together in one nicely molded piece, with a ‘hatch’ that’s screwed down on the top.  Again, I’m figuring on using some butyl rubber sealant around the seam there to try and keep out water, which I expect to be a bigger deal with this camera, since the opening is up and there’s a bigger hatch.


One of the major complaints in the Amazon reviews about both of these cameras is that the image is backward, and you can’t change it, or that it’s been built wrong.  However, these are really back-up cameras, designed to be installed in a particular way so to give an image that’s going to give the driver a familiar view of a rear-view mirror. And they do that just fine, so I think a lot of the issues in those comments is that people didn’t understand what they were buying.


Lilliput Eby701-np/c/t

Lilliput Eby701-np/c/t

The Lilliput screen is a 7″ touchscreen with a VGA input as well as two RCA inputs and a reverse-sensor that automatically changes the input to a camera’s input when the transmission is shifted into reverse. It had some good reviews as being a reliable and visible screen for vehicle use, able to interface with a vehicle-based computer (which I’m planning on installing).  It runs on 12 VDC, but also came with an AC adapter (which made testing a whole lot easier).

Lilliput screen connections.
Lilliput screen connections.

It also turned out to have TWO RCA inputs (Video 2 is the one activated by the reverse sensor), so I’m likely to install both back-up cameras and have them each on separate channels (more on this in Part II). The cables that came were actually in two parts, perhaps in case one didn’t have an on-board computer.  The first connects to the screen and includes the power jack (black), RCA jacks (yellow), reverse sensor (green wire), an audio input (white), and the screw-on secured connector for the other wire which connects to the VGA jack and a USB connector for the touchscreen.

Armed with these bits (and a 12 VDC power source from a USB IDE hard drive connector), I got into actually testing the system.

(Continued in Part II …)

 

 

 

 

 

 

 

Leave your thoughts here:

This site uses Akismet to reduce spam. Learn how your comment data is processed.